Porometer.ru

Точность и воспроизводимость результатов в порометре POROLUX™ 1000.

Одним из основных преимуществ **POROLUX™ 1000** и заложенных в него принципов измерения, является высокая точность и воспроизводимость результатов. В этой статье мы покажем, как выполняются измерения на примере стандартного бумажного фильтра. Для испытания точности, 10 различных образцов были вырезаны с одного листа; для демонстрации воспроизводимости, те же образцы были измерены 10 раз.

В обоих тестах все остальные параметры были идентичны. Мы использовали 2 мл Порофила в качестве смачивающей жидкости, нанеся её пипеткой на поверхность фильтра, который был помещен в камеру для образцов размером 25 мм. Для мокрой кривой мы выбрали интервал давлений от 0 до 0.25 бар, а количество точек выбрали равным 30. Для сухой кривой количество измеряемых точек составило 25% от установленных для мокрой кривой. Параметры стабилизации были оставлены без изменений и их значения соответствовали установленным по умолчанию.

На **Рисунке 1** представлены результаты испытания точности **POROLUX™ 1000** для 10-ти различных образцов. Мы гарантируем, что образцы, взятые для анализа, имели одинаковую форму. В **Таблице 1** представлены результаты для среднего гидравлического диаметра пор, первой точки пузырька и наименьшей поры вместе со стандартными отклонениями.

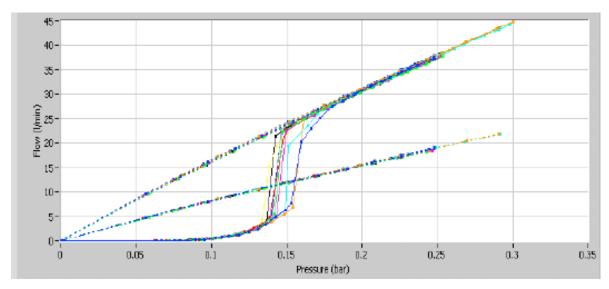


Рисунок 1: Точность POROLUX™ 1000: Мокрая и сухая кривые перекрываются 10-ю измерениями на стандартном фильтре. Из фильтра было вырезано 10-ть стандартных образцов на разных участках, которые подверглись испытаниям.

Официальный представитель Benelux Scientific

ООО "Промэнерголаб" 107258, г. Москва, ул. 1-ая Бухвостова, 12/11 Тел: +7-(495) 22-11-208 факс: +7-(495) 22-11-208

e-mail: info@porometer.ru

Porometer.ru

	Средний гидравлический	Размер точки	Размер наименьшей
	диаметр пор, (мкм)	пузырька, (мкм)	поры, (мкм)
Образец 1	4,11	9,52	2,86
Образец 2	4,45	9,66	2,82
Образец 3	4,10	9,53	2,76
Образец 4	4,27	9,62	2,27
Образец 5	4,40	9,53	2,63
Образец 6	4,69	9,59	2,72
Образец 7	4,50	10,22	3,05
Образец 8	4,48	10,22	2,81
Образец 9	4,60	9,59	2,82
Образец 10	4,50	10,10	2,73
Станд. Откл.	0,20	0,30	0,20

Таблица 1: Измерение точки пузырька, с использованием «правдивого» метода измерения на POROLUX™ 1000

На Рисунке 2 представлены кривые, полученные в результате 10 измерений, выполненных на тех же образцах. Повторяемость очень высока, лишь небольшие отличия могут быть найдены между всеми 10 образцами. В Таблице 2 приводятся результаты и расчеты стандартных отклонений для среднего гидравлического диаметра пор, точки пузырька и наименьшей поры. И снова наблюдается очень высокая воспроизводимость.

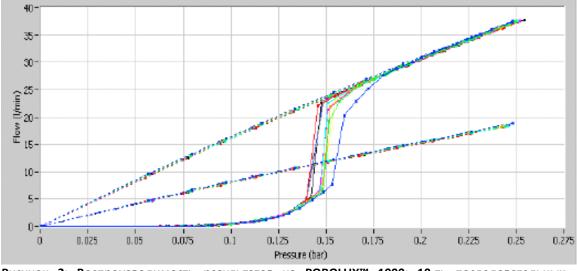


Рисунок 2: Воспроизводимость результатов на POROLUX™ 1000: 10-ть последовательных измерений на одном и том же бумажном фильтре.

Официальный представитель Benelux Scientific

ООО "Промэнерголаб" 107258, г. Москва, ул. 1-ая Бухвостова, 12/11 Тел: +7-(495) 22-11-208 факс: +7-(495) 22-11-208 e-mail: info@porometer.ru

Porometer.ru

	Средний гидравлический	Размер точки	Размер наименьшей
	диаметр пор, (мкм)	пузырька, (мкм)	поры, (мкм)
Образец 1	4,11	9,52	2,86
Образец 2	4,27	9,53	2,81
Образец 3	4,29	9,55	2,75
Образец 4	4,31	9,55	3,01
Образец 5	4,32	8,52	2,83
Образец 6	4,28	8,56	2,64
Образец 7	4,51 (*)	10,16 (*)	3,22
Образец 8	4,47 (*)	9,66 (*)	3,39
Образец 9	4,45 (*)	9,59 (*)	2,82
Образец 10	4,49 (*)	10,18 (*)	3,01
Станд. Откл.	0,13	0,59	0,23

Таблица 2: Средний гидравлический диаметр пор, точка пузырька, наименьшая пора, последовательно измеренные на одном и том же бумажном фильтре с помощью POROLUX™ 1000

Вывод:

Точность и воспроизводимость результатов достигнутых на приборе **POROLUX™ 1000**, позволяет использовать его для получения необходимых характеристик пористой поверхности. Это стало возможным, благодаря запатентованным технологиям применяем в данном приборе. Именно поэтому, ряд известных научных центров и исследовательских лабораторий ведущих мировых производств остановили свой выбор на приборах производства Benelux Scientific.

В написании статьи использованы материалы, представленные на сайте <u>www.porometer.com</u> При копировании любых материалов, ссылка на источник обязательна!

+7-(495) 22-11-208

факс: +7-(495) 22-11-208

e-mail: info@porometer.ru

^(*) Мы полагаем, что после указанных выше 6-сти измерений, образец немного деградировал, что привело к увеличению точки пузырька и среднему диаметру пор. Расчет без последних 4-х измерений дает стандартное отклонение для среднего диаметра - 0.08, а для точки пузырька — 0.51